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Take Home Message: Machine learning CT lung texture analysis and radiologist analysis both 

predict prognosis in chronic lung allograft dysfunction (CLAD), independent of CLAD 

phenotype.  Machine learning can discriminate between CLAD phenotypes without expiratory 

CT. 

 



 

 

Abstract 

Background:  Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure 

in lung transplant recipients and prognosis depends on CLAD phenotype. We used machine 

learning computed tomography (CT) lung texture analysis tool at CLAD diagnosis for 

phenotyping and prognostication compared to radiologists’ scoring. 

Methods: This retrospective study included all adult first double-lung transplant patients 

(01/2010-12/2015) with CLAD (censored 12/2019) and inspiratory CT near CLAD diagnosis. 

The machine learning tool quantified ground-glass opacity, reticulation, hyperlucent lung, and 

pulmonary vessel volume (PVV). Two radiologists scored for ground-glass opacity, reticulation, 

consolidation, pleural effusion, air trapping and bronchiectasis. Receiver operating characteristic 

curve analysis was used to evaluate the diagnostic performance of machine learning and 

radiologist for CLAD phenotype. Multivariable Cox proportional-hazards regression analysis for 

allograft survival controlled for age, sex, native lung disease, cytomegalovirus serostatus, and 

CLAD phenotype (bronchiolitis obliterans syndrome [BOS] and restrictive allograft syndrome 

[RAS]/mixed). 

Results: 88 patients were included (57 BOS, 20 RAS/mixed, and 11 unclassified/undefined) 

with CT a median 9.5 days from CLAD onset. Radiologist and machine learning parameters 

phenotyped RAS/mixed with PVV as the strongest indicator (AUC 0.85). Machine learning 

hyperlucent lung phenotyped BOS using only inspiratory CT (AUC=0.76).  Radiologist and 

machine learning parameters predicted graft failure in the multivariable analysis, best with PVV 

(HR=1.23, 95%CI 1.05-1.44, p=0.01).   



Conclusions: Machine learning discriminated between CLAD phenotypes on CT.  Both 

radiologist and machine learning scoring were associated with graft failure, independent of 

CLAD phenotype. PVV, unique to machine learning, was the strongest in phenotyping and 

prognostication.  

Key words: Lung Transplantation, Lung Allograft Rejection, Quantitative CT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 

Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung 

transplant recipients. Bronchiolitis obliterans syndrome (BOS) is the most frequent CLAD 

phenotype and is characterized by progressive obstructive lung disease [1].  A restrictive 

phenotype, restrictive allograft syndrome (RAS), is now well recognized and is associated with 

parenchymal fibrosis and a worse prognosis but is less frequent than BOS [2]. In addition to 

these two phenotypes, the International Society of Heart and Lung Transplantation (ISHLT) 

2019 consensus statement added a mixed phenotype and an undefined phenotype [1]. 

Furthermore, a small but significant proportion of patients may be unclassifiable using the 

existing framework [3]. 

Imaging of CLAD is best documented for BOS [4]. On computed tomography (CT), BOS 

is characterized by geographic regions of air trapping that manifest as hyperlucent lung, 

accentuated by exhalation. Bronchial wall thickening occurs with bronchiectasis developing over 

time, often in association with mucus plugging and clustered nodules [5]. The typical appearance 

of RAS is consolidation and ground-glass opacity evolving into reticulation and traction 

bronchiectasis with pleural and parenchymal fibrosis, more commonly in the upper lung zones 

[5]. CT features have been associated with allograft survival in double lung transplant patients 

using a radiologist-scored approach [3, 6-8] and when using quantitative measures of lung 

density, volume, parametric response mapping, and airway measures [9-15]. 

The computer-aided lung informatics for pathology evaluation and rating (CALIPER) 

tool is a validated machine learning (ML) algorithm that performs automated, quantitative 

analysis of lung texture on CT [16]. It segments the lung from the chest and classifies each 



portion of the lung as either normal, hyperlucent, reticular, ground-glass, or honeycomb texture. 

It has been principally used in the evaluation of idiopathic pulmonary fibrosis where it is 

superior to visual analysis in quantifying extent of disease and predicting survival [17-19]. The 

strongest predictor of survival is pulmonary vessel volume (PVV), a biomarker derived from the 

ML analysis with no direct visual correlate [20]. 

Although hyperlucent, ground-glass and reticular textures are typical features of diffuse 

lung disease in non-transplant patients, they are also reported features of CLAD. For this reason, 

we hypothesized that an existing ML analysis tool may be useful in the phenotyping of CLAD 

and in predicting graft survival. Indeed, quantitative assessment of chest CT has been identified 

as a key future direction in CLAD research [1] and we sought to address this need. 

 

 

Materials and Methods 

Patient Selection 

This single-center retrospective study has been approved by the institutional research 

ethics board (REB# 15-9531-AE).  All adult first double lung transplant patients transplanted 

between 2010 and 2015 were selected.  Exclusion criteria included single-lung transplants, heart-

lung transplants, and re-transplants. We then excluded those who died without CLAD, who were 

CLAD-free up to December 31, 2019, and those who had non-CLAD pulmonary function 

decline. Patients were required to have had a thin section CT within 100 days after CLAD onset 

or, if unavailable, within 28 days before onset. Clinical characteristics were extracted from the 

medical record and date of CLAD onset was derived.  CLAD phenotype and date of onset was 



assigned according to previously described methodology and considered the gold standard for 

sensitivity analyses below [3].  Graft failure was defined as death or re-transplantation. 

We further collected virtual crossmatch status at the time of transplant (i.e. donor specific 

antibodies [DSA] at transplant), the presence of DSA at CLAD onset based on the last test before 

onset or not more than three weeks after onset, as well as development of de novo DSA between 

transplant and CLAD onset.  The pre-CLAD infection score (number of pre-CLAD 

bronchoalveolar lavage with significant pathogens divided by the number of all pre-CLAD 

bronchoalveolar lavage) and pre-CLAD acute cellular rejection score (sum of histologic A-

grades divided by the number of all evaluable biopsies) were also calculated.   

Radiologic follow-up 

Our routine lung transplant CT protocol is a low dose scan acquired at end-inspiration 

and followed by a minimal dose scan at end expiration. Generally, a low dose scan is performed 

at around one third the dose of a regular dose scan, and the minimal dose scan is performed at 

one tenth the dose of a regular scan. Surveillance CT scans are performed at three-month 

intervals for the first-year post-transplant and then at 18 and 24 months with CT also being 

performed as needed when CLAD is suspected. All patients were scanned on one of three multi-

slice CT units (Aquilion, Aquilion ONE, or Aquilion PRIME, Canon, Japan) at Toronto General 

Hospital.  For inclusion in the study, the CT scan had to be non-contrast and have a transverse 

image series in a mediastinal reconstruction algorithm with contiguous slices of a thickness ≤ 1 

mm.  Each scan was reviewed by a fellowship-trained thoracic radiologist (M.M., five years of 

experience) to assess for factors that may interfere with texture analysis including respiratory 

motion artifact and patient intubation.  

  



Machine learning analysis 

Qualifying CT scans were analyzed using the Lung Texture Analysis tool (Imbio LLC, 

Minneapolis, Minnesota) based on CALIPER with the development and training of the machine 

learning algorithm having been previously described [16].  This is a tool that performs a texture 

analysis in interstitial lung disease but was not trained on our lung transplant cohort.  In brief, the 

lung is segmented from the chest wall and the large airways and central vasculature are removed.  

It then assigns a texture (normal lung [NLML], hyperlucent lung [HLML], ground-glass opacity 

[GGOML], reticular [RETML], or honeycombing) to each voxel and a color overlay output is made 

available for review on the picture archiving and communications system (Coral, Toronto, 

Ontario, Canada) (figure 1). Quantitative data in the form of total lung capacity (CTTLC), 

volumes for each assigned texture, and pulmonary vessel volume (PVVML) are provided in a 

comma-separated values file output from a locally hosted server.  A thoracic radiologist (M.M.) 

reviewed all CT scans with the output overlay present to exclude studies where segmentation 

failed in that extra-pulmonary structures comprised an estimated >1% of lung volume.   

Radiologist analysis 

CT scans were independently evaluated by two fellowship-trained cardiothoracic 

radiologists (RAD) each with five years of experience (G.R.K. and C.H.) and who were blinded 

to all clinical information, outcome, and ML results.  A semi-quantitative scoring system was 

used as previously described by Suhling et al [6]. In brief, a CT image of the upper, mid, and 

lower lung was selected at a predetermined interval (25th, 50th, and 75th percentile image) and 

presented in lung windows (width 1500 Hounsfield units (HU), level -600 HU) and mediastinal 

windows (width 350 HU, level 40 HU). Each lung was evaluated for consolidation (CONRAD), 

ground-glass opacity (GGORAD), reticulation (RETRAD), traction bronchiectasis, and pleural 



effusion using established definitions [21]. Each lung was also evaluated for air trapping 

(ATRAD) using the same selected images paired with an expiratory image at the same level, when 

expiratory was performed.  Each finding in each lung was scored on a grading of 0-2 where “0” 

meant the abnormality was not present, “1” it involved < 10% of the lung, and “2” it involved 

>10% of the lung. The radiologists were initially trained on a set of 18 images derived from six 

representative CLAD patients who were not included in this study.  

Statistical analysis 

Continuous variables were described using median and inter quartile range [IQR], or 

mean and standard deviation, and categorical variables using numbers and percentages. 

Comparisons between two groups were made by independent samples t-test or Mann-Whitney U 

test for continuous variables and Fisher’s exact test or Chi square test for categorical variables. 

Variables analyzed by a t-test were evaluated for normality using histograms or a Shapiro-Wilks 

test, when appropriate. 

For radiologist scoring, agreement was assessed with intraclass correlation coefficients 

(ICC) for GGORAD, RETRAD, CONRAD and ATRAD and with weighted kappa for pleural effusion 

and bronchiectasis. The mean of the two radiologist’s scores was used in analysis.  For ML 

scoring, all variables were divided by CTTLC to derive the proportion of total lung involved and 

are expressed as a percentage value.  The relationship between ATRAD and HLML was evaluated 

using the Pearson correlation coefficient. The relationship between CTTLC and TLC from 

pulmonary function testing at the time of CLAD diagnosis was evaluated using the Pearson 

correlation coefficient.   

  



 

The radiologist and ML scores were compared between CLAD phenotype groups using 

logistic regression models. RAS and mixed CLAD phenotypes were grouped to account for 

small numbers as were unclassified and undefined phenotypes. Receiver operating characteristic 

(ROC) curve analysis was used to determine the diagnostic performance for CLAD phenotyping.    

Cox proportional-hazards (PH) regression analysis was used to assess the association of 

radiologist and ML scoring with graft failure and PH assumption validity was tested. Univariable 

and multivariable Cox PH regression analyses were performed for each score adjusted for the 

following covariates selected a priori based on their known association with post-lung transplant 

outcomes: age (per five-year intervals), male sex, native lung disease (COPD, cystic fibrosis, or 

interstitial lung disease), CMV recipient-donor serostatus matching, and CLAD phenotype 

(BOS, RAS/Mixed, or unclassified/undefined) [22]. For illustration purposes, Kaplan Meier 

curves were generated using the tertiles of each quantitative and semi-quantitative variable 

assessed. A p value of <0.05 was considered statistically significant. Analysis was conducted in 

R.4.0 (R Foundation for Statistical Computing, Vienna, Austria). 

 

 

Results 

Patient cohort and CT acquisition 

There were 211 patients with a diagnosis of CLAD, of whom 95 had an eligible CT 

(figure 2). ML segmented the lung in 93% of cases. The final CLAD cohort therefore consisted 

of 88 patients: 57 BOS, 12 RAS, 8 mixed, 8 undefined and 3 unclassified. The only significant 

difference across CLAD phenotypes in clinical characteristics was a longer time from CLAD 



diagnosis to graft failure in patients with BOS (p=0.012) (table 1).  Analysis of pre-CLAD 

immunologic variables (infection score, rejection score, and de novo DSA) as well DSA status at 

CLAD onset and virtual crossmatch status at transplant revealed no significant difference across 

CLAD phenotypes (supplementary table E1). 

CT was performed on the day of CLAD onset in 15 patients, in the first 100 days after 

CLAD onset in 64 patients, and in the 28 days preceding CLAD onset in nine patients with an 

overall median interval of 9.5 days after CLAD diagnosis. The CTTLC was strongly correlated 

with TLC (r=0.897, p<0.001) (supplementary figure E1) and technical parameters of the CT 

examinations can be found in supplementary table E2.   

Machine learning analysis 

The proportion of HLML was highest in the BOS group (p<0.001).  GGOML, RETML and 

PVVML were highest in the RAS/Mixed group (p<0.001) (table 2). A visual representation of all 

ML output in the form of glyphs is presented in supplementary figures E2 and E3 within the 

online data supplement. No significant volume of honeycombing was identified (median 0.022% 

[IQR 0.009%, 0.06%]) and it was therefore excluded from analyses.  

ROC analysis demonstrated that GGOML, RETML and PVVML had strong diagnostic 

capability in identifying the RAS/mixed phenotype (AUC=0.84-0.85) and this was strongest with 

PVVML. Using a cut-point of 3%, PVVML had a sensitivity and specificity of 90.0% and 70.1%, 

respectively (OR=2.08, p<0.001) (table 3). The ROC curves are provided in supplementary 

figure E4. Phenotyping of BOS with HLML was achieved using inspiratory CT (AUC=0.76) and 

did not utilize the expiratory CT to identify air trapping (table 3).  

  



Radiologist scoring 

Interrater reliability was good for GGORAD, RETRAD, and CONRAD (ICC=0.89, 0.81 and 

0.84, respectively).  There was moderate interrater reliability for pleural effusion (weighted 

kappa=0.60) and poor interrater reliability for bronchiectasis (weighted kappa=0.42) likely 

related to the infrequency of these findings.  All scored features were highest in the RAS/mixed 

group (p<0.001) except bronchiectasis (table 2). ROC analysis demonstrated strong diagnostic 

capability for GGORAD, RETRAD, and CONRAD in identifying the RAS/mixed phenotype (table 

3). 

A subset of 50 patients had expiratory imaging available (34 BOS, 11 RAS/Mixed and 5 

Undefined).  Interrater reliability was moderate for ATRAD (ICC=0.52) and among the lowest of 

the radiologic findings.  ATRAD was significantly higher in the BOS group (median 6, IQR 3.5-8) 

than in RAS/Mixed (median 2, IQR 1-5) and undefined (median 2, IQR 0.75-3, p=0.003) but 

only weakly correlated with HLML (r=0.189, p=0.188). 

Allograft survival analysis 

Univariable analysis of the baseline clinical variables showed that age (HR=0.89, 

p=0.003) and RAS/mixed phenotype (HR 2.24, p=0.008) were associated with time to graft 

failure after CLAD diagnosis (table E3). BOS phenotype was not associated with graft failure 

(HR 0.83, p=0.674) and was not included in the multivariable analysis. Univariable analysis of 

the radiologist and ML scores showed an association with graft failure for all variables assessed 

except NLML and HLML (table 4). 

In multivariable analyses, radiologist scoring of GGORAD, RETRAD and CONRAD were 

independently associated with graft failure (table 4). ML scoring of RETML and PVVML were 

also independently associated with graft failure and GGOML approached statistical significance 



(HR=1.36, 95%CI 1.00-1.86, p=0.050) (table 4). NLML and HLML were not associated with graft 

failure.  

Although the proportion of NLML and HLML were not associated with graft failure, in 

their multivariable analyses there was an independent association of RAS/Mixed phenotype with 

graft failure (HR=2.73, 95%CI 1.42-5.28, p=0.00 and HR=2.43, 95%CI 1.21-4.85, p=0.01, 

respectively), and it was only in these two multivariable analyses that any independent 

association of CLAD phenotype with graft failure was identified. Details of the ML and 

radiologist multivariable analyses are provided in supplementary table E4, E5 and E6, within 

the online data supplement. 

The proportion of each radiologic finding was stratified by tertiles and Kaplan-Meier 

curves were generated to facilitate visualization of lung allograft survival after CLAD diagnosis 

(figure 3). The greatest separation of all tertiles was seen with RETRAD with 50% allograft 

survival at 439 days in the tertile with the most reticulation compared to 1134 days and 1700 

days in the middle and lowest tertile, respectively (p=0.002). 

Because of the heterogeneity seen in supplementary figure E2 and E3 where some 

cases of BOS were seen to have GGO and reticulation, whereas other cases in the 

undefined/unclassified grouping were seen to contain hyperlucent lung, we empirically 

regrouped cases into three basic imaging patters: Group 1 – inflammatory presentation (GGOML 

and RETML >1% of CTTLC) ii) Group 2 – hyperlucent presentation (HLML >10% of CTTLC) and 

iii) Group 3 – indeterminate presentation (fulfilling neither Group 1 nor Group 2 criteria). The 

revised glyph grouping is presented in supplementary figure E5 and Kaplan-Meier curves are 

presented in supplementary figure E6. Using this classification, the inflammatory group would 

be comprised of 16 RAS/Mixed, five undefined/unclassified, and 15 BOS.  The indeterminate 



group would be 20 BOS, four RAS/Mixed, and four undefined/unclassified.  The hyperlucent 

group would be 22 BOS and two undefined/unclassified. 

 

 

 

 

Discussion 

We found an excellent diagnostic performance of the ML tool in identifying the RAS and 

mixed CLAD phenotype.  Furthermore, ML identified hyperlucent lung in patients with BOS, 

without necessitating expiratory CT.  Both ML and radiologist scoring at the time of CLAD 

onset were of prognostic importance, independent of CLAD phenotype in our multivariable 

model, emphasizing the importance of CT early in the evaluation of CLAD. PVVML, a biomarker 

unique to ML, had the strongest diagnostic and prognostic performance amongst all variables 

assessed.  

We investigated PVV because it was found to be a strong predictor of mortality in diffuse 

lung disease [20] [23]. As a marker of total vessel volume in the lung, possible explanations for 

the significance of PVV in pulmonary fibrosis include redistribution of blood flow from 

abnormal lung to normal lung, the presence of arterial shunts, or a dilatation of blood vessels 

related to increased negative pressure at inspiration in the context of lung stiffness [20].  It is also 

possible that perivascular inflammatory opacity is being classified as vessel volume by ML.  

Although PVV increases as CTTLC decreases, a reduction in lung volumes alone does not fully 

account for the significance of PVV as we controlled for CTTLC in our analyses. PVV was 

expressed as a proportion of CTTLC, and we also added CTTLC into the PVV multivariable model.   



In a previous study, histopathologic examination of explanted lungs with end-stage 

restrictive CLAD revealed focal areas of capillary obliteration with a resultant decreased 

microvascular density, a finding that would suggest a lower PVV in advanced CLAD [24]. 

However, the same authors also describe areas of reactive microvascular proliferation amongst 

fibrosis and ectasia of small lymphatic vessels that, in our estimation, might account for an 

increased PVV.  In the absence of a definite histologic correlate at the onset of CLAD, the 

prognostic significance of increased PVV in CLAD could relate to increased negative 

intrathoracic pressure at end-inspiration, particularly in those patients with restriction and lung 

stiffness, and possibly the inclusion of perivascular inflammation in vessel segmentation, given 

that the analysis is not capable of reliably distinguishing between a true vessel versus a 

perivascular opacity.  However, a further quantitative analysis of the small vessels in CLAD, 

both at onset and at the end stage, is warranted given the intriguing findings of microvascular 

damage in lungs with restrictive CLAD or RAS [24]. 

ML-identified hyperlucent lung is a feature associated with BOS on fully inspiratory 

exams and this likely corresponds to air-trapping in this cohort. Conventionally, radiologists 

assess for air-trapping using paired inspiratory and expiratory imaging and, using this approach 

to diagnose BOS, Bankier et al describe a threshold of 32% air-trapping as being 83% sensitive, 

89% specific, and 88% accurate [25]. Indeed, radiologist assessed air-trapping may be 

insensitive particularly if there is poor timing of the CT scan and limited expiratory effort 

(supplementary figure E7). More recently, Verleden et al used parametric response mapping 

alongside a matched stable cohort and found a sensitivity of 62.5% and specificity of 93.8%. 

With ML, and amongst a cohort of only CLAD patients, we found a cut-off of just 0.81% 

hyperlucent lung to be 79% sensitive, 71% specific, and 76% accurate.  The lower specificity in 



our study is likely due to including patients with all forms of CLAD. Interestingly, patients with 

CLAD of a mixed and RAS phenotype may demonstrate lesions of obliterative bronchiolitis and 

indeed we found hyperlucent lung in all CLAD groups [26, 27].   

In the multivariable analysis, we found that NLML and HLML were not independently 

associated with graft failure whereas CLAD phenotype defined clinically was.  Despite this 

limitation of HLML as a marker of CLAD prognosis, the ability of ML to identify this important 

feature of CLAD on inspiratory CT warrants further investigation. Foregoing expiratory CT 

would offer a radiation dose reduction and improved efficiency in performing and reporting the 

CT studies. 

Although the ML analysis presents unique insights in PVV and HLML quantification, the 

radiologist scoring also performed well in our study. The semi-quantitative radiologist scoring 

system in this study was used in a similarly sized lung transplant cohort by Suhling et al in 2016 

who found that, by combining CT findings of consolidation and reticulation with TLC, they 

could identify a subgroup of patients with restrictive CLAD and poorer survival [6].  Their 

cohort differed substantially from ours in that one third had severe traction bronchiectasis, a 

marker of advanced fibrosis, and CT was performed a median of 387 days after CLAD onset. In 

contrast, CT was performed a median of 9.5 days after CLAD onset in the current study and only 

one case had severe bronchiectasis. Furthermore, Suhling et al found that GGO was not 

associated with graft failure whereas we found that it was and this may also relate to CT timing if 

GGO is attributable to acute inflammation near the onset of CLAD.  Indeed, Philippot et al also 

applied the same scoring system to single lung transplant patients and found it useful in the early 

detection of RAS [28].  Neither study controlled for CLAD phenotype in their multivariable 



analysis and our finding of opacities as independent predictors of graft failure suggest that a 

quantitative assessment of the lung opacities, achieved through ML, is of value.  

Although we demonstrate a strong ability of ML to phenotype CLAD and its 

determination of graft survival, there are several other potential uses.  The quantitative data 

provided by ML analysis may be of use in future clinical drug trials and treatment monitoring 

where there is a need for reproducible biomarkers of disease.  With validation, the use of an 

automated ML tool in lung transplant studies would allow improved comparison of cohorts 

across centers.  It should also be noted that ML is sensitive to fractional volumes of lung 

abnormality, the optimal cut-off for HLML in the current study being 0.81%. This finding raises 

the question of the ability for ML to detect lung texture abnormalities in CLAD at its earliest 

stage, before becoming clinically evident.   

Limitations of this study include the single center and retrospective design, although a 

CALIPER based ML analysis is compatible with a wide range of CT protocols. Furthermore, we 

were restricted in our ability to include a larger number of patients due to the absence of archived 

CT thin slices prior to 2013.  Despite this, our cohort is among the largest with a comprehensive 

CT analysis in CLAD. Finally, this ML tool was not trained on lung transplant cases and does 

not capture all features of particular interest in lung transplant patients, such as pleural 

thickening or complications at the bronchial anastomoses. A future ML tool trained on and 

tailored for lung transplant patients might be of even greater value.  Of course, the clinician and 

radiologist remain critically important in evaluating the CT and considering the findings in the 

appropriate clinical context. 

In conclusion, ML strongly discriminated between CLAD phenotypes using automated 

analysis.  Both radiologist and machine learning scoring were associated with graft failure, 



independent of the CLAD phenotype, and without using expiratory CT. Integration of ML into 

clinical use may facilitate automated CT analysis for phenotyping and prognostication in a 

reliable and reproducible manner.  PVV, a biomarker unique to ML, was best in CLAD 

phenotyping and prognostication and warrants future investigation in this population. 
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Figure Legends 

 

Figure 1. Inspiratory computed tomography (CT) and machine learning output in chronic lung 

allograft dysfunction.  In a 36-year-old woman with bronchiolitis obliterans syndrome, (A) 

conventional CT analysis demonstrates normal appearing lung which, on texture analysis (B), is 

a mix of normal (green) and hyperlucent (blue).  In a 40-year-old man with a mixed phenotype, 

(C) conventional CT analysis demonstrates ground-glass opacity and reticulation that, on texture 

analysis (D) is also classified as a mixture of ground-glass opacity (yellow) and reticulation 

(orange). 

  



 

 

Figure 2.  Flow chart of patient inclusion criteria. Failure of segmentation related to classifying 

trachea (four cases), chest wall (two cases) or abdominal fat (one case) as lung. CLAD – chronic 

lung allograft dysfunction; CT – computed tomography. PFTs – pulmonary function tests. 

  



 

 

Figure 3. Kaplan-Meier curves demonstrating the allograft survival probability over time for (A) 

RETML, (B) GGOML, (C) PVVML, (D) GGORAD, (E) RETRAD, and (F) CONRAD.  The red line 

corresponds to the highest tertile of radiologic abnormality, the blue line is the middle tertile, and 

the green is the tertile with the least amount of radiologic abnormality. CON – consolidation; 

GGO – ground-glass opacity; ML – machine learning; PVV – pulmonary vessel volume; RAD – 

radiologist; RET – reticulation. 

 

  



Tables 

 
Characteristic BOS  

(n=57) 

RAS/Mixed  

(n=12/8) 

Unclassified/ 

Undefined (n=11) 

P-value 

Age at transplant, years 

+/- SD  

47.81 +/- 15.41 45.45 +/- 17.39 48.09 +/- 17.02 0.840 

Sex, n (%) 

Female 

Male 

 

31 (54.4) 

26 (45.6) 

 

8 (40.0) 

12 (60.0) 

 

6 (54.5) 

5 (45.5) 

0.526 

Native lung disease 

  

ILD 

Cystic fibrosis 

COPD 

Other 

 

 

20 (35.1) 

16 (28.1) 

14 (24.6) 

7 (12.3) 

 

 

10 (50.0) 

4 (20.0) 

3 (15.0) 

3 (15.0) 

 

 

1 (9.1) 

4 (36.4) 

4 (36.4) 

2 (18.2) 

0.450 

Time to CLAD onset 

(median [IQR], days)  

700 [367, 1171] 624 [425, 1125] 804 [445, 1370] 0.765 

Graft failure 

Death 

Re-transplant 

 

27 (77.1) 

8 (22.9) 

 

13 (76.5) 

4 (23.5) 

 

6 (66.7) 

3 (33.3) 

0.803 

CMV 

D-R- 

D+R- 

R+ 

 

8(14.0) 

15 (26.3) 

34 (59.6) 

 

1 (5.0) 

4 (20.0) 

15 (75.0) 

 

1 (9.1) 

4 (36.4) 

6 (54.5) 

0.638 

Time from CLAD onset 

to graft failure (median 

[IQR], days) 

746 [445, 1135] 370 [250, 574] 520 [429, 694] 0.012 

TABLE 1.  Patient characteristics by chronic lung allograft dysfunction phenotype. CLAD – chronic lung 

allograft dysfunction; BOS – bronchiolitis obliterans syndrome; CMV – cytomegalovirus; RAS – 

restrictive allograft syndrome; COPD – chronic obstructive pulmonary disease; ILD – interstitial lung 

disease. 

 



 BOS (n=57) RAS/Mixed 

(n=12/8) 

Undefined/Unclassif

ied (n=11) 

P-value 

Radiologist scoring 

(median score [IQR]) 

Consolidation 

Ground-glass 

Reticulation 

Bronchiectasis 

Pleural effusion 

 

 

0.50 [0.00, 1.00] 

4.00 [2.00, 6.50] 

2.50 [0.50, 6.00] 

0.00 [0.00, 0.50] 

0.00 [0.00, 0.00] 

 

 

3.00 [1.50, 5.00] 

9.00 [7.38, 10.50] 

8.00 [6.50, 9.62] 

0.00 [0.00, 0.62] 

1.00 [0.50, 1.88] 

 

 

0.50 [0.00, 1.25] 

4.00 [1.50, 7.25] 

3.00 [0.75, 6.50] 

0.00 [0.00, 0.00] 

0.00 [0.00, 0.50] 

 

 

<0.001 

<0.001 

<0.001 

0.298 

<0.001 

Machine learning (median 

% [IQR]) 

Normal 

Hyperlucent 

Ground-glass 

Reticular 

PVV 

 

 

88.74 [77.14, 94.51] 

5.75 [1.00, 19.88] 

0.45 [0.17, 1.70] 

0.53 [0.23, 1.46] 

2.27 [1.95, 3.14] 

 

 

89.50 [81.59, 93.24] 

0.12 [0.05, 1.51] 

6.43 [1.67, 13.08] 

2.35 [1.43, 3.63] 

4.06 [3.28, 5.25] 

 

 

94.45 [79.59, 96.21] 

0.68 [0.23, 5.81] 

0.85 [0.22, 2.67] 

1.15 [0.22, 2.01] 

2.29 [1.92, 3.31] 

 

 

0.534 

<0.001  

<0.001 

<0.001 

<0.001 

 

TABLE 2. Radiologist and machine learning analysis of chest CT scans tabulated by chronic lung 

allograft dysfunction phenotypes. BOS – bronchiolitis obliterans syndrome; PVV – pulmonary vessel 

volume ; RAS – restrictive allograft syndrome. 

 

 

 

 

 

 

 

 

 



 Receiver Operating Characteristic Curve Analysis Univariable logistic 

regression 

Texture Optimal  

Cut-point 

Sensitivity Specificity Accuracy AUC Odds Ratio P-value 

HLML 0.81% 0.79 0.71 0.76 0.763 1.11 0.006 

GGOML 0.79% 1.00 0.56 0.66 0.845 1.12 0.004 

RETML 

PVVML 

0.93% 

3.02% 

1.00 

0.90 

0.65 

0.71 

0.73 

0.75 

0.835 

0.851 

1.59 

2.08 

0.003 

<0.001 

GGORAD 7.00 0.80 0.79 0.80 0.829 1.44 0.001 

RETRAD 6.00 0.90 0.74 0.77 0.838 1.42 0.001 

CONRAD 1.50 0.80 0.76 0.77 0.820 1.88 0.001 

TABLE 3.  Univariable logistic regression and receiver operating curve analysis for the proportion of 

machine learning and radiologist variables in bronchiolitis obliterans syndrome phenotype for 

hyperlucent lung (HLML, first row) and restrictive allograft dysfunction/mixed phenotype for all other 

variables. AUC – Area under the curve; CLAD – chronic lung allograft dysfunction; CON – 

consolidation; GGO – ground-glass opacity; HL – hyperlucent lung; ML – machine learning; NL – 

normal lung; PVV – pulmonary vessel volume; RAD – radiologist; RET – reticulation. 

 

 

 

 

 

 

 

 

 

 



 

 Univariable analysis Multivariable analysis 

Radiologic 

variable 

Hazard ratio 95% CI P-value Hazard ratio 95% CI P-value 

NLML 0.93 0.78-1.10 0.37 0.96 0.80-1.15 0.65 

HLML 0.92 0.76-1.12 0.40 0.90 0.72-1.13 0.37 

GGOML 1.45 1.12-1.88 <0.001 1.36 1.00-1.86 0.05 

RETML 1.25 1.11-1.39 <0.001 1.20 1.05-1.37 0.01 

PVVML 1.30 1.14-1.48 <0.001 1.23 1.05-1.44 0.01 

GGORAD 1.16 1.08-1.25 <0.001 1.14 1.05-1.23 <0.001 

RETRAD 1.18 1.10-1.26 <0.001 1.17 1.08-1.27 <0.001 

CONRAD 1.26 1.12-1.41 <0.001 1.16 1.01-1.34 0.04 

TABLE 4. Univariable and multivariable analysis of automated and semi-quantitative scoring for the 

highest tertile of each radiologic abnormality, for the diagnosis of graft failure (death or re-

transplantation).  The multivariable model was performed for each radiological variable separately and is 

adjusted for sex, CLAD phenotype, age, native lung disease and CMV serostatus matching. CLAD – 

chronic lung allograft dysfunction; CON – consolidation; GGO – ground-glass opacity; HL – hyperlucent 

lung; ML – machine learning; NL – normal lung; PVV – pulmonary vessel volume; RAD – radiologist; 

RET – reticulation. 

 



CHRONIC LUNG ALLOGRAFT DYSFUNCTION PHENOTYPE AND PROGNOSIS BY 

MACHINE LEARNING CT ANALYSIS 

 

Online Data Supplements 

 
Characteristic BOS 

(n=57) 

RAS/Mixed  

(n=12/8) 

Undefined/  

Unclassified 

(n=11) 

P-value 

Pre-CLAD infection score, 

mean±SD  

0.27±0.23 0.32±0.25 0.22±0.29 0.545 

Pre-CLAD acute cellular 

rejection score, mean±SD* 

0.30±0.33 0.31±0.26 0.40±0.38 0.620 

Positive DSA at CLAD onset, 

n (%) 

22 (38.6) 10 (50) 6 (54.5) 0.485 

Positive pre-CLAD dnDSA, n 

(%) 

33 (57.9) 11 (55) 6 (54.5) 0.962 

Positive virtual crossmatch at 

transplant, n (%)** 

9 (15.8) 1 (5.3) 4 (40) 0.054 

TABLE E1.  Pre-CLAD immunologic events by CLAD phenotype.  Infection score was calculated as the 

sum of bronchoalveolar lavage samples with at least one significant pathogen on culture, divided by the 

total number of samples. Acute cellular rejection score was calculated as the sum of histologic acute 

cellular rejection A-grades, divided by the number of evaluable biopsies. CLAD – chronic lung allograft 

dysfunction; BOS – bronchiolitis obliterans syndrome; DSA – donor-specific antibodies; dnDSA – de 

novo donor-specific antibodies; RAS – restrictive allograft syndrome; Tx – transplant. *Data absent in 

two patients. **Unknown in one patient with RAS and one patient with undefined CLAD. 

 



 

 
 
 
 
 
Computed Tomography Parameter  

Scanner model, n (%) 

Aquilion 

Aquilion ONE 

Aquilion PRIME 

 

57 (64.8) 

22 (25) 

9 (10.2) 

Reconstruction kernel, n (%) 

FC03 

FC04 

FC11 

 

56 (63.6) 

31 (35.2) 

1 (1.1) 

Slice thickness 0.5 mm, n (%) 88 (100) 

Tube current (mean ± SD, mAs) 49.8 ± 29.9 

Tube voltage 

120 kVp 

135 kVp 

 

7 (8) 

81 (92) 

Effective dose (median [IQR], mSv) 2.0 [1.6, 2.5]* 

TABLE E2.  Computed tomography parameters for all cases included in the final cohort. *The effective 

dose includes both the inspiratory and expiratory CT.  The expiratory CT accounts for approximately 25% 

of the total dose and was not required for machine learning analysis.  

 

 

 

 



 

 

 

Characteristic Hazard ratio 95% Confidence Interval P-value 

Age (per 5 years) 0.89 0.82-0.96 0.003 

Sex (male) 1.10 0.66-1.83 0.724 

Native lung disease – COPD  0.96 0.38-2.45 0.936 

Native lung disease – CF  1.89 0.80-4.46 0.148 

Native lung disease – ILD  0.99 0.41-2.36 0.976 

CMV matching D+R- 0.89 0.37-2.15 0.791 

CMV matching R+ 0.80 0.36-1.82 0.600 

CLAD - RAS/Mixed 2.24 1.24-4.08 0.008 

CLAD – Unclassified/Undefined 1.41 0.65-3.05 0.383 

CLAD – BOS 0.83 0.34-2.00 0.674 

 

TABLE E3. Univariable Cox proportional hazards model assessing the association of each confounder 

variable with time to graft failure (death or re-transplantation). CLAD – chronic lung allograft 

dysfunction; CF – cystic fibrosis; COPD – chronic obstructive pulmonary disease; CMV – 

cytomegalovirus; D+R- – donor positive and recipient negative; R+ – recipient positive; ILD – interstitial 

lung disease; RAS – restrictive allograft syndrome.



 Normal lung HLML GGOML RETML PVVML 

 HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value 

ML variable 0.96 (0.80-1.15) 0.65 0.90 (0.72-1.13) 0.37 1.36 (1.00-1.86) 0.05 1.20 (1.05-1.37) 0.01 1.23 (1.05-1.44) 0.01 

CLAD-RAS/Mixed 2.73 (1.42-5.28) 0.00 2.43 (1.21-4.85) 0.01 2.02 (0.96-4.23) 0.06 1.69 (0.78-3.68) 0.18 1.63 (0.74-3.59) 0.23 

CLAD-UNC/UND 1.44 (0.62-3.35) 0.39 1.26 (0.54-2.95) 0.59 1.27 (0.55-2.95) 0.57 1.36 (0.59-3.12) 0.47 1.33 (0.58-3.06) 0.51 

Male Sex 1.15 (0.66-2.00) 0.63 1.12 (0.65-1.95) 0.69 1.26 (0.72-2.22) 0.42 1.18 (0.67-2.08) 0.56 1.18 (0.67-2.08) 0.56 

Age 0.87 (0.73-1.02) 0.08 0.87 (0.74-1.02) 0.09 0.86 (0.73-1.01) 0.07 0.85 (0.72-1.00) 0.05 0.87 (0.73-1.02) 0.09 

NLD-COPD 1.37 (0.46-4.07) 0.57 1.36 (0.46-4.00) 0.58 1.36 (0.45-4.07) 0.58 1.32 (0.44-3.92) 0.62 1.36 (0.46-4.08) 0.58 

NLD-CF 1.10 (0.37-3.23) 0.86 1.26 (0.43-3.73) 0.67 1.09 (0.37-3.18) 0.88 1.02 (0.35-3.02) 0.97 1.17 (0.40-3.42) 0.77 

NLD-ILD 1.06 (0.40-2.77) 0.91 1.08 (0.41-2.83) 0.88 1.07 (0.41-2.80) 0.89 1.25 (0.48-3.26) 0.64 1.23 (0.47-3.21) 0.68 

CMV D+R- 0.72 (0.28-1.83) 0.49 0.73 (0.29-1.88) 0.52 0.79 (0.31-2.03) 0.62 0.88 (0.34-2.30) 0.80 0.92 (0.35-2.43) 0.87 

CMV R+ 0.70 (0.30-1.62) 0.40 0.70 (0.30-1.63) 0.41 0.73 (0.31-1.72) 0.47 0.80 (0.34-1.90) 0.62 0.83 (0.35-1.97) 0.68 

 

TABLE E4. Details of multivariable analysis results of the machine learning variables using a Cox proportional hazards regression model for graft failure (re-

transplantation or death). Each column represents a separate multivariable analysis for the machine learning variable at the column header. A p-value of <0.05 was 

considered significant. CLAD – chronic lung allograft dysfunction; CF – cystic fibrosis; COPD – chronic obstructive pulmonary disease; CMV – cytomegalovirus; 

D+R- – donor positive and recipient negative; R+ – recipient positive; GGO – ground-glass opacity texture; HLML – hyperlucent lung texture; ILD – interstitial lung 

disease; ML – machine learning; NLD – native lung disease; PVV – pulmonary vessel volume; RET – reticular texture; RAS – restrictive allograft syndrome; UNC – 

unclassified; UND – undefined. 

 

 



 

 GGORAD RETRAD CONRAD 

 HR (95% CI) P-

value 

HR (95% CI) P-

value 

HR (95% CI) P-

value 

Radiologist 

variable 

1.14 (1.05-1.23) 0.00 1.17 (1.08-1.27) 0.00 1.16 (1.01-1.34) 0.04 

CLAD-RAS/Mixed 1.69 (0.81-3.51) 0.16 1.34 (0.63-2.86) 0.45 1.85 (0.82-4.14) 0.14 

CLAD-UNC/UND 1.20 (0.50-2.91) 0.69 1.14 (0.48-2.72) 0.77 1.52 (0.66-3.50) 0.32 

Male Sex 1.06 (0.59-1.91) 0.85 0.99 (0.55-1.80) 0.98 1.17 (0.66-2.06) 0.60 

Age 0.85 (0.72-1.00) 0.05 0.82 (0.69-0.97) 0.02 0.85 (0.72-1.01) 0.06 

NLD-COPD 1.65 (0.53-5.11) 0.38 1.76 (0.57-5.50) 0.33 1.45 (0.48-4.39) 0.51 

NLD-CF 1.15 (0.40-3.33) 0.80 0.96 (0.33-2.78) 0.94 1.00 (0.34-2.92) 0.99 

NLD-ILD 1.27 (0.48-3.34) 0.63 1.41 (0.53-3.71) 0.49 1.23 (0.47-3.24) 0.68 

CMV D+R- 0.81 (0.31-2.15) 0.68 0.99 (0.37-2.68) 0.99 0.84 (0.35-2.21) 0.72 

CMV R+ 0.80 (0.34-1.91) 0.62 0.91 (0.38-2.21) 0.84 0.81 (0.34-1.94) 0.63 

TABLE E5. Details of multivariable analysis results of the radiologist scoring using a Cox proportional 

hazards regression model for graft failure (re-transplantation or death). Each column represents a separate 

multivariable analysis for the radiologist variable at the column header. A p-value of <0.05 was 

considered significant. CLAD – chronic lung allograft dysfunction; CF – cystic fibrosis; COPD – chronic 

obstructive pulmonary disease; CMV – cytomegalovirus; D+R- – donor positive and recipient negative; 

R+ – recipient positive; GGO – ground-glass opacity texture; ILD – interstitial lung disease; NLD – 

native lung disease; RAD – radiologist; RET – reticular texture; RAS – restrictive allograft syndrome; 

UNC – unclassified; UND – undefined. 

 

 

 



 

 Univariable analysis Multivariable analysis 

Radiologic 

variable 

Hazard 

ratio 

95% CI P-value PH validity 

P-value 

Hazard 

ratio 

95% CI P-

value 

PH validity 

P-value 

NLML 0.93 0.78-1.10 0.37 0.6 0.96 0.80-1.15 0.65 0.421 

HLML 0.92 0.76-1.12 0.40 0.67 0.90 0.72-1.13 0.37 0.288 

GGOML 1.45 1.12-1.88 <0.001 0.15 1.36 1.00-1.86 0.05 0.151 

RETML 1.25 1.11-1.39 <0.001 0.54 1.20 1.05-1.37 0.01 0.230 

PVVML 1.30 1.14-1.48 <0.001 0.1 1.23 1.05-1.44 0.01 0.054 

GGORAD 1.16 1.08-1.25 <0.001  0.34 1.14 1.05-1.23 <0.001 0.434 

RETRAD 1.18 1.10-1.26 <0.001 0.37 1.17 1.08-1.27 <0.001 0.46 

CONRAD 1.26 1.12-1.41 <0.001 0.2 1.16 1.01-1.34 0.04 0.13 

TABLE E6. Cox proportional hazards model assumption validity for each radiologic variable with the 

associated P-values. CON – consolidation; GGO – ground-glass opacity; HL – hyperlucent lung; ML – 

machine learning; NL – normal lung; PVV – pulmonary vessel volume; RAD – radiologist; RET – 

reticulation. 

 

 

 



 

FIGURE E1. Strong correlation of total lung capacity derived by CT lung segmentation and total lung 

capacity derived by pulmonary function testing at the time of chronic lung allograft dysfunction diagnosis 

(Pearson correlation coefficient r=0.897, p<0.001). 

 
 



 
 

FIGURE E2.  Glyph representation of the machine learning output for each cases of restrictive allograft 

syndrome (top two rows), unclassified or undefined phenotype (middle two rows), and mixed phenotype 

(bottom two rows). Glyphs are composed of five concentric rings, each representing one fifth of the lung 

volume, and multiple wedges each representing a lobe of the lung. Normal lung is green, hyperlucent is 

blue, ground-glass opacity is yellow, and reticulation is orange. Ground-glass opacity and reticulation are 

the predominant abnormality.  LL – left lower lobe; LM – lingula; LU – left upper lobe; RL – right lower 

lobe; RM – right middle lobe; RU – right upper lobe. 

 



 

 
 
FIGURE E3.  Glyph representation of the machine learning output for each case of bronchiolitis 

obliterans syndrome. Glyphs are composed of five concentric rings, each representing one fifth of the 

lung volume, and multiple wedges, each representing a lobe of the lung. Normal lung is green, 

hyperlucent is blue, ground-glass opacity is yellow and reticulation is orange. Hyperlucent lung is the 

predominant abnormality in BOS.  Although pulmonary opacities (yellow and orange) are more typical of 

RAS in general, most of the opacities in this BOS cohort are in the lower lung zone (bottom half of the 



glyph) rather than upper lung zone.  Furthermore, they should persist to qualify as RAS-like and it is also 

possible that texture analysis is identifying more opacity than was evident to the CLAD adjudicator. BOS 

– bronchiolitis obliterans syndrome; LL – left lower lobe; LM – lingula; LU – left upper lobe; RAS – 

restrictive allograft syndrome; RL – right lower lobe; RM – right middle lobe; RU – right upper lobe. 

 

 

 



 

FIGURE E4. Receiver operating characteristic curves for (A) HLML, (B) GGOML, (C) RETML and (D) 

PVVML. GGO – ground glass opacity texture; HL – hyperlucent texture; ML – machine learning; PVV – 

pulmonary vessel volume; RET – reticular texture. 



 

Figure E5. Glyph representation of a revised classification where the inflammatory group had GGOML 

and RETML over 1%, the hyperlucent group had over 10% HLML without inflammatory features, and the 

indeterminant group were all remaining cases.  GGO – ground glass opacity texture; HL – hyperlucent 

texture; ML – machine learning; RET – reticular texture. 

 

 

 



 

Figure E6.  Kaplan-Meier curves contrasting allograft survival (death or re-transplantation) by (A) lung 

texture analysis in three groups: hyperlucent lung (green), indeterminate (blue) and inflammatory (red); 

and (B) CLAD phenotype in three groups: bronchiolitis obliterans syndrome (green), restrictive allograft 

syndrome/mixed (blue), and undefined/unclassified (red). 

 

 



 

FIGURE E7. Evaluation for air trapping using paired (A) inspiratory and (B) ultra-low dose expiratory 

computed tomography (CT) imaging in a 30-year-old woman with bronchiolitis obliterans syndrome.  Air 

trapping was scored as not present on these paired images, like related poor timing or effort with the 

expiratory acquisition. (C) Lung texture analysis of the inspiratory CT reveals extensively hyperlucent 

lung (blue, 56.9% of total lung volume) in contrast to normal lung texture (green). 

 


