Imbio works with the most trusted names in healthcare to bring breakthrough image analysis to daily clinical care. Imbio is building an industry-leading portfolio to enable personalized imaging and diagnosis for millions of patients with chronic lung and thoracic conditions.


Lung Density Analysis™

Lung Density Analysis™

Lung Texture Analysis™

Research Algorithms


1. World Health Organization. Accessed online Feb 1, 2017.
2. ZA Azziz et al. HRCT diagnosis of diffuse parenchymal lung disease: interobserver variation. Thorax. 2004; 54: 506-511
3. Wang et al. Optimal threshold in CT quantification of emphysema. Eur Radiol. 2013 Apr;23(4):975-84
4. V Zavaletta, BJ Bartholmai, R Robb. High Resolution Multi-Detector CT Aided Tissue Analysis and Quantification of Lung Fibrosis. Acad Radiol. 2007 July ; 14(7): 772–787.
5. Maldonado, Moua, et al. Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 2014; 43: 204–21
6. Raghunath, Moua, et al. Correlation of Quantitative Lung Tissue Characterization as Assessed by CALIPER With Pulmonary Function and 6-Minute Walk Test. Chest. 2011;140(4_MeetingAbstracts):1040A
7. Weinheimer, T Achenbach, et al. About Objective 3-D Analysis of Airway Geometry in Computerized Tomography. IEEE Trans Med Imaging. 2008 Jan;27(1):64-74
8. F Maldonado, JM. Boland, et al. Noninvasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer-Aided Nodule Assessment and Risk Yield (CANARY)—A Pilot Study. J Thorac Oncol. 2013;8: 452-460.
9. S Raghunath, F Maldonado et al. Noninvasive Risk Stratification of Lung Adenocarcinoma using Quantitative Computed Tomography. J Thorac Oncol. 2014;9: 1698–1703.
10. T. Henzler, S. Roeger, et al. Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. European Respiratory Journal. 2012 39: 919-926.