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BACKGROUND: Pulmonary complications, including infections, are highly prevalent in patients
after hematopoietic cell transplantation with chronic graft-vs-host disease. These comorbid
diseases can make the diagnosis of early lung graft-vs-host disease (bronchiolitis obliterans
syndrome) challenging. A quantitative method to differentiate among these pulmonary dis-
eases can address diagnostic challenges and facilitate earlier and more targeted therapy.

STUDY DESIGN AND METHODS: We conducted a single-center study of 66 patients with CT
chest scans analyzed with a quantitative imaging tool known as parametric response map-
ping. Parametric response mapping results were correlated with pulmonary function tests
and clinical characteristics. Five parametric response mapping metrics were applied to
K-means clustering and support vector machine models to distinguish among post-
transplantation lung complications solely from quantitative output.

RESULTS: Compared with parametric response mapping, spirometry showed a moderate cor-
relation with radiographic air trapping, and total lung capacity and residual volume showed a
strong correlation with radiographic lung volumes. K-means clustering analysis distinguished
four unique clusters. Clusters 2 and 3 represented obstructive physiology (encompassing 81%of
patients with bronchiolitis obliterans syndrome) in increasing severity (percentage air trapping
15.6% and 43.0%, respectively). Cluster 1 was dominated by normal lung, and cluster 4 was
characterized by patients with parenchymal opacities. A support vector machine algorithm
differentiated bronchiolitis obliterans syndrome with a specificity of 88%, sensitivity of 83%,
accuracy of 86%, and an area under the receiver operating characteristic curve of 0.85.

INTERPRETATION: Our machine learning models offer a quantitative approach for the identi-
fication of bronchiolitis obliterans syndrome vs other lung diseases, including late pulmonary
complications after hematopoietic cell transplantation. CHEST 2020; 158(3):1090-1103
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Bronchiolitis obliterans syndrome (BOS) is a pulmonary
manifestation of chronic graft-vs-host disease (cGVHD)
that typically occurs within 2 years after hematopoietic
cell transplantation (HCT).1 BOS is characterized by
small airways inflammation and fibrinous obliteration of
the bronchiolar lumen.2,3 Clinical presentation includes
insidious onset of dyspnea, cough, and fixed obstructive
defect on spirometry. Rapid irreversible decline in lung
function is the hallmark of the disease.3

The National Institutes of Health (NIH) diagnostic
criteria for BOS comprise clinical history, air trapping,
and hyperinflation on pulmonary function testing (PFT)
and CT.2 However, its sensitivity for diagnosing BOS is
poor, because only half of patients with biopsy-proven
BOS meet NIH diagnostic criteria.4,5 Comorbid
conditions, such as pulmonary infections, inflammatory
pneumonia (eg, organizing pneumonia [OP]), and
extraparenchymal restriction resulting from cGVHD-
related sclerodermatous disease of the thorax (truncal
sclerosis [TS]) can directly affect static and dynamic
pulmonary assessment and thus make the diagnosis
difficult.6-8 Steroid-induced myopathy is also highly
prevalent in this population and can further confound
identification of disease. Because of these etiologic
uncertainties, patients are often misdiagnosed or
diagnosed after a fixed obstructive defect has become
apparent late in the disease, increasing morbidity and
mortality.3
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Pulmonary parametric response mapping (PRM), a
quantitative imaging tool, has been studied in patients
with BOS, with promising results.9 In addition to
assessing inspiratory and expiratory volumes, PRM
quantifies percentage of lung involved in air trapping,
a marker of BOS,9 and percentage of lung that is
normal, emphysema-like, or has parenchymal
opacities.10

PRM has been used to assess progression of small
airways damage in patients with COPD.11,12 In lung
transplant patients with BOS, PRM showed a moderate
correlation between air trapping and decline in FEV1

and provided prognostic information on survival.13,14

However, whether these findings can be extended to
BOS after HCT is unknown.

Therefore, we evaluated the utility of PRM in a well-
characterized cohort of patients at our academic medical
center. We analyzed the association of PFTs and PRM
metrics and applied an unsupervised machine learning
algorithm to explore whether PRM metrics alone can
represent patient physiology. From the output of this
algorithm, we created a machine learning model to
diagnose BOS and compared the model’s performance
with radiologists’ interpretations. Our results provide
new insight into the diagnosis and management of
lung GVHD and other pulmonary complications after
HCT.
Materials and Methods
Eligible patients were those who received HCT and were seen in our
Lung GVHD clinic from June 22, 2015 to June 22, 2018, with the
following inclusion criteria: (1) a documented complaint of dyspnea
on exertion; (2) PFTs in the 3-month period before HCT; (3) at least
one PRM CT chest; and (4) PFTs in the 3-month period after PRM
CT chest (all but one patient received PFTs within 1 month of
PRM). Demographic features, medical history, medication use,
specific organ manifestation and staging of cGVHD, and mortality
were abstracted from the medical record as well as our center’s
Blood and Marrow Transplantation database. Human subject’s
approval was obtained from our institutional review board (IRB
number 43215). Data were collected and analyzed in compliance
with the Health Insurance Portability and Accountability Act.

A panel of four clinicians (three pulmonary physicians [J. L. H., L. C.,
and H. S.) and one blood and marrow transplant physician [L. J.])
adjudicated the clinical diagnosis for all eligible patients. Two
thoracic radiologists (HG, ZG) reached a consensus diagnosis for
BOS based on established criteria in the radiology literature.15

Imaging Methods

Noncontrast thoracic CT scanning at full inspiration (total lung
capacity [TLC]) and end expiration (residual volume [RV]) was
performed using helical CTs (Siemens Force, Siemens Medical
Systems; or GE Discovery CT750 HD, GE Healthcare). Refer to
e-Appendix 1 for the protocolized patient coaching in acquisition of
volume measurements.

Scans performed with a Siemens scanner were with 515 � 512
reconstruction matrix, 192 � 0.6 mm collimation, 120 kV, rotation
time 0.25 seconds, pitch 1, CareDose4D at QRM125. Images were
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reconstructed at 1-mm axial slice thickness with sharp reconstruction
algorithm (filter Br54) for visual assessment and neutral reconstruction
algorithm (filter Bf32) at 0.7 mm increment for PRM quantitative
analysis. Scans performed with a GE scanner were with 515 � 512
reconstruction matrix, 64 � 0.625 mm collimation, 120 kV, rotation
time 0.5 seconds, pitch 1.375, SmartMA at NI52. Images were
reconstructed at 1.25-mm axial slice thickness with bone kernel for
visual assessment and standard kernel at 0.8-mm increment for PRM
quantitative analysis.

In addition to measurement of inspiratory and expiratory volumes,
PRM processing of CT images produced a percentage for each of
four metrics—normal lung, air trapping, emphysema-like lung
disease, and parenchymal opacities. Values greater than or equal to
950 Hounsfield units (HU) and less than �810 HU at inspiration
and greater than or equal to �856 HU at expiration were classified
as normal (PRMNormal, green voxels). Greater than or equal to 950
HU and less than �810 HU at inspiration and less than �856 at
expiration were classified as air trapping (PRMAT, yellow voxels),
also known as functional small airways disease. Greater than or
equal to �1,000 HU and less than �950 HU at inspiration and less
than �856 HU at expiration were classified as emphysema-like lung
(PRMEmp, red voxels). Voxels greater than or equal to �810 HU and
less than �500 HU at inspiration and less than �500 HU at
expiration were classified as parenchymal disease (PRMPD, purple
voxels).
1092 Original Research
PRM metrics were compared with PFTs to assess physiological
relevance for obstructive and restrictive lung disease. Mean PRM
metrics were compared across the four clinical disease states. CT-
based lung volumes were adjusted by American Thoracic Society
(ATS)/European Respiratory Society (ERS) guidelines and are
presented in detail in e-Appendix 1.16 Additional details of GVHD
diagnostic criteria and of radiology diagnosis are presented in the
Methods section e-Appendix 1 and e-Table 1.2

Statistics

Metrics for obstructive and restrictive disease were analyzed with
Pearson Correlation. Statistical significance of differences was
assessed with the two-sample t-test for pairs, the Kruskal Wallis test
for group comparisons, and the Wilcoxon rank-sum test for pairwise
comparisons of multiple groups. The Benjamini-Hochberg procedure
was applied to control for multiple comparisons. P < .05 was
considered significant. K-means clustering was used for clustering
analysis. Optimal cluster number K was chosen by the elbow method
with a Scree plot, as described in the online supplemental material
and seen in e-Figure 1. A support vector machine algorithm was
trained with 10-fold cross-validation on a 75% training set, and the
model’s performance was assessed on a held-out 25% test set.
Further detail on the machine learning analysis is in e-Appendix 1.
All statistical analyses were performed in R version 3.6.1, with the
stats package for K-means clustering and the caret package for
classification analytics.
TABLE 1 ] Demographic Data Before Hematopoietic
Cell Transplantation

No. 66

Age, mean (SD) 52.2 (12.5)

Male, No. (%) 37 (56.7)

Race/ethnicity, No. (%)

Asian 8 (11.9)

White 51 (76.1)

Hispanic 8 (11.9)

HCT-CI scorea

<3 Comorbidities 50

$3 Comorbidities 11

Underlying reason for HCT, No. (%)

AML 20 (30.3)

ALL 14 (21.2)

MDS 12 (18.2)

CML 6 (9.1)

CLL 3 (4.5)

NHL 6 (9.1)

HL 2 (3.0)

Other 3 (4.5)

Type of donor, No. (%)

Match-related 30 (45.5)

Unrelated-identical 24 (36.4)

Unrelated-mismatched 10 (15.2)

Haploidentical/cord 2 (3)

(Continued)
Results
Seventy-nine patients were screened for inclusion in the
study. Thirteen patients were excluded based on loss to
follow-up (n ¼ 1), lack of follow-up PFTs (n ¼ 2),
inability to locate pre-HCT PFTs (n ¼ 1), or technically
suboptimal PRM studies (n ¼ 9). No significant
differences in demographic or disease characteristics
were seen between included and excluded subjects (e-
Table 2) Sixty-six patients with PRM scans were
included in the study. The cohort comprised 37 men and
29 women, with a mean age of 52 years. Most patients
had no lung disease before HCT (Table 1).17 Most
received myeloablative transplant regimens (56.1%), and
a similar distribution of patients underwent transplants
from matched related donors vs matched/mismatched
unrelated donors (45.5% vs 51.6%, respectively).

Ninety-one percent of patients were diagnosed with
cGVHD (Table 2). Mean time from transplantation to
last follow-up was 25 months (median ¼ 19 months;
interquartile range ¼ 12-30 months). Mean time from
transplantation to diagnosis of lung GVHD was
35 months (median ¼ 26 months, interquartile range ¼
10-46 months). During study follow-up, all-cause
mortality was 16.4%. BOS was the most common
posttransplantation lung complication (35%), and
17% of patients had OP either in isolation or in
combination with a second posttransplantation lung
complication. TS was observed in 14% of patients.
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TABLE 1 ] (Continued)

Regimen, No. (%)

Myeloablative 37 (56.1)

Non-myeloablative 19 (28.8)

Reduced intensity 10 (15.2)

PFT characteristics before HCT,
mean (SD)

FEV1, L 3.20 (0.76)

FEV1, % predicted 100.5 (16.0)

FVC, L 4.13 (0.98)

FVC, % predicted 99.6 (13.8)

FEV1/FVC, % 78.14 (7.64)

TLC, L 6.10 (1.68)

TLC, % predicted 104.7 (15.8)

RV, L 1.89 (0.88)

RV, % predicted 99.1 (32.9)

RV/TLC, % 29.42 (8.37)

DLCO, % predicted 89.51 (20.10)

History of prior lung disease, No. (%)

Asthma 12 (17.9)

COPD 1 (1.5)

No prior lung disease 54 (80.6)

History of smoking, No. (%) 21 (31.3)

ALL ¼ acute lymphoblastic leukemia; AML ¼ acute myeloid leukemia;
CLL ¼ chronic lymphocytic leukemia; CML ¼ chronic myelogenous leu-
kemia; DLCO ¼ diffusing capacity for carbon monoxide; HL ¼ Hodgkin’s
lymphoma; MDS ¼ myelodysplastic syndrome; NHL ¼ non-Hodgkin’s
lymphoma; RV ¼ residual volume; TLC ¼ total lung capacity.
aHematopoietic cell transplantation comorbidity index score (HCT-CI) was
calculated as described by Sorror.17

TABLE 2 ] Demographic Data After Hematopoietic Cell
Transplantation

No. 66

Median lengthofclinical follow-up,mo(IQR) 19 (12-30)

Median time from HCT to lung cGVHD
diagnosis, mo (IQR)

26 (10-46)

Acute GVHD > grade II, No. (%) 30 (68.2)

cGVHD, No. (%) 60 (90.9)

cGVHD grade, No. (%)a

Mild 4 (6.7)

Moderate 18 (30)

Severe 38 (63.3)

Other sites of cGVHD involvement,
No. (%)

Eyes 36 (60)

Mouth 41 (68.3)

GI tract 13 (21.6)

Liver 25 (41.7)

Skin 47 (78.3)

Musculoskeletal 14 (23.3)

Fascia 14 (23.3)

Other 9 (15)

Pulmonary complications after HCT,
No. (%)

BOS 26 (38.8)

OP 12 (17.9)

TS 10 (14.9)

Infection 3 (4.5)

Fibrosis 3 (4.5)

Criteria for BOS diagnosis, No. (%)b

Clinical criteria 2 (6.5)

Biopsy 2 (6.5)

NIH 27 (87)

Treated with FAM, %c 77

Mortality, No. (%) 11 (16.4)

No. of PRM CT scans analyzed 66

BOS ¼ bronchiolitis obliterans syndrome; cGVHD ¼ chronic graft-vs-host
disease; FAM ¼ inhaled fluticasone, azithromycin, montelukast; NIH ¼
National Institutes of Health; OP ¼ organizing pneumonia; PRM ¼ para-
metric response mapping; TS ¼ truncal sclerosis.
acGVHD was staged based on the National Institute of Health consensus
guidelines.2
Posttransplantation PFTs indicated obstructive and
restrictive physiology (Table 3). BOS patients
demonstrated moderate obstruction (P < .001) and a
higher TLC in absolute value and percent predicted (P <

.001). RV was significantly higher in absolute value (P ¼

.04) and percent predicted (P < .001) in patients with
BOS compared with patients with OP or TS, as was RV/
TLC (P < .001). In TS, extraparenchymal restriction was
evident from a reduced absolute and percent predicted
TLC (P < .001).
bOf the patients diagnosed with BOS by NIH criteria, four had co-existing
OP and therefore were assigned OP as their diagnosis in the analysis. Of
the two patients diagnosed with BOS by clinical criteria, one patient was
assigned as having BOS in the analysis because of a strong response to
BOS therapy by functional activity, respiratory status, and PFTs. With
inclusion of the two patients diagnosed by biopsy, 26 patients were
classified as having BOS for the analysis.
cAll patients with a diagnosis of BOS were treated with the FAM regimen.
PFTs, PRM, and Disease States

Figure 1 depicts associations between PFT and PRM
parameters. Moderate negative correlation was found
between FEV1 and air trapping (-0.42) (Fig 1A), and RV
and air trapping had a moderate positive correlation
(0.62) (Fig 1C). The strongest correlations were observed
for CT-based absolute volume measures (Fig 1D, 1E):
0.70 between RV and expiratory volume, and 0.88
chestjournal.org
between TLC and inspiratory volume. In patients with
BOS, TLC and inspiratory volume had a correlation
coefficient of 0.94; RV and expiratory volume had a
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TABLE 3 ] Pulmonary Function Tests After HCT for Patients With BOS, OP, or TS

Bronchiolitis Obliterans Syndrome Organizing Pneumonia Truncal Sclerosis P a

No. 26 12 10 NA

PFTs, mean (SD)

FEV1 (L) 1.72 (0.79) 2.41 (0.80) 2.18 (0.74) < .001

FEV1, % predicted 59.6 (35.7) 75.2 (31.3) 68.9 (21.7) < .001

FVC, L 3.13 (1.09) 3.94 (0.99) 2.76 (0.99) .003

FVC, % predicted 80.1 (16.9) 75.6 (29.5) 66.4 (22.8) < .001

FEV1/FVC, % 54.8 (11.9) 74.2 (10.2) 80.1 (8.4) < .001

TLC, L 5.64 (1.50) 4.86 (1.46) 4.42 (1.05) < .001

TLC, % predicted 98.6 (16.4) 74.2 (21.0) 77.4 (18.3) < .001

RV, L 3.16 (7.25) 1.44 (0.70) 1.60 (0.59) .041

RV, % predicted 129.1 (36.1) 69.0 (26.6) 79.2 (22.4) < .001

RV/TLC, % 44.6 (10.1) 35.0 (12.9) 35.8 (10.6) < .001

DLCO, % predicted 78.2 (20.1) 66.1 (19.6) 65.7 (14.1) < .001

All patients were assigned a diagnosis for post-transplantation complication based on adjudicated criteria (see Methods). PFT ¼ pulmonary function test.
See Table 1 legend for expansion of other abbreviations.
aKruskall-Wallis test used for r statistical significance.
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Figure 2 – PRM metrics by posttransplantation lung complication. Representative coronal cuts by disease state classified by PRM colors. B, Percentage
normal lung by posttransplantation lung complication. C, Percentage air trapping by posttransplantation lung complication; D, Percentage paren-
chymal opacities by posttransplantation lung complication. E, Percentage predicted inspiratory volume (adjusted for height and sex) by post-
transplantation lung complication. F, Percentage predicted expiratory volume (adjusted for age, height, and sex) by posttransplantation lung
complication.19 Each percentage is a mean. Error bars show the SEM. By Wilcoxon rank sum test of each disease relative to people with no lung disease,
statistical significance to P < .05 is labeled with a star. Benjamini-Hochberg procedure is used to control for the false discovery rate. Diagnostic
categories after hematopoietic cell transplantation contain 18 patients with no lung disease, 26 patients with BOS, 12 patients with OP, and 10 patients
with TS. TS ¼ truncal sclerosis. See Figure 1 legend for expansion of other abbreviations.
correlation coefficient of 0.66 (P < .0001). These data
suggest that PRM has a role in assessing the degree of
obstructive and restrictive lung physiology, especially in
the form of volume measurements. Given that no
chestjournal.org
significant differences were seen using absolute or
percent predicted CT-based volumes, the volumes in
what follows are presented as the predicted values based
on established ATS/ERS criteria.16
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Figure 3 – Scatterplots for BOS by relevant PRM metrics. A, Inspiratory volume vs air trapping for patients with BOS and without BOS. B, Expiratory
volume vs air trapping for patients with BOS and without BOS. C, Three-dimensional scatterplot for BOS by PRM metrics of air trapping percentage
vs percentage predicted expiratory volume vs percentage predicted inspiratory volume. An interactive, three-dimensional scatterplot is also found online
in e-Figure 2.18 See Figure 1 and 2 legends for expansion of abbreviations.
Figure 2A depicts representative coronal CT cuts
processed by PRM. In comparing BOS patients with
patients without lung disease (Fig 2C), there was
significantly higher air trapping (28.7% vs 6.5%,
respectively; P < .0001) and inspiratory volume (Fig 2E,
89.9% vs 76.9%, respectively; P ¼ .005). In contrast, for
patients with TS, inspiratory volume was significantly
lower than in patients with no lung disease
(58.7% vs 76.9%, respectively; P ¼ .01; Fig 2E).
Expiratory volume also revealed hyperinflation in
patients with BOS vs those without lung disease
(P ¼ .0004; Fig 2F). These associations and ground truth
TABLE 4 ] Parametric Response Mapping Metrics by Mean

Cluster No. Normal Lung, %
Parenchymal
Opacities, %

1 24 82.3 12.1

2 21 71.5 12.1

3 11 45.4 9.2

4 7 57.9 40.1

1096 Original Research
diagnosis are illustrated in two- and three-dimensional
scatterplots (Fig 3).18 Together, these data suggest that
the PRM metrics of air trapping and inspiratory and
expiratory volumes may be useful in differentiating
pulmonary complications after HCT.

Machine Learning for Pulmonary Complications
After HCT

K-means clustering by PRMmetrics captured 76.4% of the
cohort’s variance and identified four patient clusters
(Table 4; Fig 4). Cluster 1was characterized by normal lung
physiology (82.3% normal lung by PRM). Mean values for
Percentage per Cluster

Air Trapping, %
Inspiratory
Volume, %

Expiratory
Volume, %

5.3 68.0 104.3

15.6 89.9 150.8

43.0 92.9 202.2

1.7 44.8 71.6
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TABLE 5 ] Pretransplantation PFTs by Clustera

Cluster 2 Cluster 3 Pa

No. 21 11 NA

Age, mean (SD) 54.81 (9.96) 49.73 (10.71) .191

Female, No. (%) 9 (43) 7 (64) .457

PFTs, mean (SD)

FEV1, L 3.16 (0.82) 3.22 (0.69) .846

FEV1, % predicted 103.8 (14.3) 102.6 (16.0) .834

FVC, L 4.20 (1.07) 4.12 (0.90) .843

FVC, % predicted 104.57 (12.66) 102.64 (13.89) .694

FEV1/FVC, % 75.62 (6.52) 78.18 (5.69) .279

TLC, L 6.57 (1.52) 6.35 (2.56) .831

TLC, % predicted 117.00 (15.33) 104.00 (16.92) .128

RV, L 2.01 (0.88) 1.88 (1.29) .813

RV, % predicted 112.10 (38.77) 86.67 (41.38) .235

RV/TLC, % 32.00 (9.21) 26.00 (9.63) .225

DLCO, % predicted 98.81 (17.27) 89.36 (18.50) .162

See Tables 1 and 3 legends for expansion of abbreviations.
aTwo-sample t test used to calculate P value.
clusters 2 and 3 suggested increased severity of BOS by air
trapping (15.6% vs 43.0%, respectively, P < .0001) and
expiratory volume (151%vs 202%, respectively;P< .0001).
Moreover, clusters 2 and 3 encompassed 81% of patients
with the clinical diagnosis of BOS.

Pretransplantation PFTs for patients in clusters 2 and 3
revealed no statistically significant differences (Table 5).
In contrast, posttransplantation PFTs for patients in
clusters 2 and 3 indicated differences that were clinically
TABLE 6 ] Post-transplantation PFTs by Cluster

Cluster 2

No. 21

All-cause mortality, No. (%)b 2 (9.5)

PFTs, mean (SD)

FEV1, L 1.96 (0.88

FEV1, % predicted 64.95 (21.6

FVC, L 3.35 (1.23

FVC, % predicted 82.95 (18.5

FEV1/FVC, % 57.63 (11.4

TLC, L 5.80 (1.49

TLC, % predicted 97.21 (14.1

RV, L 2.37 (0.77

RV, % predicted 109.84 (31.

RV/TLC, % 41.37 (11.5

DLCO, % predicted 74.63 (30.8

See Tables 1 and 3 legends for expansion of abbreviations.
aTwo-sample t-test used to calculate P value.
bThe two deaths in cluster 2 were secondary to relapse-related mortality. The
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and statistically significant in absolute FEV1, percentage
predicted FEV1, percent predicted FVC, percent
predicted RV, and RV/TLC (Table 6). Together, this
suggests that patients in cluster 2 and cluster 3 had
marked worsening of obstruction longitudinally after
transplantation.

We conducted a principal component analysis (PCA) to
understand the contribution of each PRM metric to the
ground truth diagnosis of pulmonary complications
Cluster 3 Pa

11 NA

2 (18.2) .888

) 1.24 (0.45) .017

7) 41.82 (14.74) .004

) 2.59 (0.81) .080

5) 66.64 (18.47) .028

6) 50.73 (20.31) .241

) 5.62 (1.35) .739

5) 97.55 (13.13) .949

) 2.90 (0.86) .093

08) 148.45 (23.37) .001

3) 49.64 (7.38) .042

1) 69.82 (19.39) .645

two deaths in cluster 3 were secondary to BOS-related mortality.
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Figure 5 – Principal components analysis of PRM metrics. The first two principal components (PCs) for five PRM metrics are shown. PC 1 explains
49.4% of cohort variance, whereas PC 2 explains 29.2% of cohort variance (78.6% of total variance). Each arrow represents a PRM metric, with the
arrow direction representing its contribution to a PC and the arrow length representing the magnitude of its contribution to variance. Each ellipse is the
normal probability for the group. The units of each axis are a composite of linear combinations of the original PRM variables. See Figure 1 legend for
expansion of abbreviation.
after HCT (Fig 5). The PRM metrics of air trapping and
expiratory and inspiratory volume pointed in the
direction of BOS (red squares), indicating that these
metrics contribute to the variance that makes BOS
patients differ from others. Percentage normal lung
pointed in the direction of patients with no lung disease
(orange circles), and volume measurements pointed in
the opposite direction of TS (gray diamonds). In sum,
these results imply that PRM analysis can create a
taxonomy for pulmonary complications after HCT,
forming the foundation of a diagnostic model for BOS
based on air trapping and inspiratory and expiratory
volumes.

Given the association and exploratory analyses, we
applied a support vector machine algorithm to classify
patients with BOS. Figure 6 shows the decision boundary
for identifying BOS from air trapping and expiratory
volume (Fig 6A, 6B) and from air trapping and
inspiratory volume (Fig 6C, 6D). For example, in a patient
with air trapping of 15%, the algorithm diagnosed BOS
when the expiratory volume was greater than or equal to
approximately 150% of predicted. When air trapping was
the sole variable, the model had an accuracy of 79% (P ¼
.05), specificity of 88%, and sensitivity of 67% (P ¼ .05).
Adding expiratory volume did not alter diagnostic
performance, but adding inspiratory volume to air
trapping increased accuracy to 86% (P ¼ .02) and
sensitivity to 83% (P ¼ .03). Table 7 shows model
performance in comparison with the consensus diagnosis
of two board-certified thoracic radiologists (H. G. and Z.
G.), with a specificity (60%) and sensitivity (70%) (P ¼
chestjournal.org
.02) comparable to those of previous studies assessing CT-
based diagnosis of BOS.19,20 These results suggest that the
thresholds created by our machine learning models can
help refine and enhance interpretation of volumetric
chest CTs in HCT patients with posttransplantation lung
complications.
Discussion
In this study we used machine learning algorithms to
identify pulmonary complications after HCT, to
diagnose BOS, and to assess BOS severity from PRM
processing of chest CT scans. By PRM metrics alone,
these models offer an approach to assisting in the
differentiation and clinical care of HCT patients with
cGVHD.

Lung GVHD after HCT is increasingly appreciated to be
accompanied by heterogeneous comorbidities. Although
BOS is well-described by NIH guidelines, conditions
such as OP and TS in this population have only been
studied in descriptive cohorts.21,22 Our well-
characterized and uniformly observed and treated
cohort comprised people who manifested BOS, OP, and
TS, with a prevalence consistent with the literature.5,7

Following-up with the patients in our clinic for years
allowed us to assess response to therapy and thus
improved our diagnostic accuracy.

Our findings of a moderate negative and positive
correlation, respectively, of PRM air trapping with FEV1

and RV/TLC recapitulated those of studies conducted in
patients with BOS after lung transplantation, which
1099
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and expiratory volumes. C, Machine learning decision boundaries for diagnosing BOS from air trapping and inspiratory volume. D, Figure depicts the
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The boundary was created from the 75% training set, and its performance is from the 25% test set. It is superimposed on all PRM scans to illustrate
clinical application. Sixty-three of the 66 scans were included, with three scans excluded because of missing at least one volume measurement. See
Figures 1 and 2 legends for expansion of abbreviations.
report moderate negative correlation (R¼ -0.59) between
air trapping and decline in FEV1

14 and moderate
correlation (R ¼ 0.663) between air trapping and
increased RV/TLC.23 Our classification model also builds
on prior work from the lung transplant literature, in
which machine learning has been applied to the analysis
of functional respiratory imaging to predict early BOS
with an accuracy of 85% (combining volumes, airway
resistance, and surface area of the right middle lobe, right
upper lobe, and central airway, respectively).24

Ultimately, comparison of BOS after HCT with BOS after
1100 Original Research
lung transplantation can constitute a future study,
because the latter represents a more progressive disease
and is the most common long-term cause of mortality.25

We found that PRM measures were compelling when
used to differentiate clinical diagnoses. Mean metrics
differed significantly for BOS (increased air trapping,
inspiratory and expiratory volumes) and for TS
(decreased inspiratory volume). Machine learning
algorithms applied without prior knowledge of patient
characteristics identified similar distinctions in
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TABLE 7 ] BOS Diagnosis by Machine Learning Models Compared With Thoracic Radiologists

Diagnosis of BOS With Air Trapping and
Expiratory Volume

Diagnosis of BOS With Air Trapping and
Inspiratory Volume

Radiologist Diagnosis of
BOS

Sensitivity 0.67 0.83 0.70

Specificity 0.88 0.88 0.60

PPV 0.80 0.83 0.53

NPV 0.78 0.88 0.76

Accuracy 0.79 0.86 0.64

F1 score 0.73 0.83 0.67

AUC
(95% CI)

0.77 (0.53-1.0) 0.85 (0.65-1.0) 0.65 (0.54-0.76)

Radiologist diagnosis of BOS is shown for expiratory phase. AUC ¼ area under the receiver operating characteristic curve; NPV ¼ negative predictive value;
PPV ¼ positive predictive value. See Table 1 legend for expansion of other abbreviations.
physiology. Clustering analysis found two clusters
representing BOS in its early or mild stages (cluster 2,
17% of all patients) and in its moderate to severe
stages (cluster 3, 15% of all patients). In total, our
models offer an approach to address current gaps in
clinical care, such as diagnosis of early BOS, which is
commonly delayed for many months by clinicians.26

Compared with this study, a prior study by Galbán et al9

identified BOS from air trapping alone and did so with a
similar accuracy (79% vs 75%, respectively), a lower
specificity (88% vs 72%, respectively) and a higher
sensitivity (67% vs 76%, respectively). Notable
differences are present between these studies: (1)
differences in comparison groups, because Galbán et al9

evaluated BOS vs infection; the current study evaluated
BOS vs a broader comparison (no lung disease,
infection, fibrotic lung disease and other
posttransplantation pulmonary complications, including
TS and OP), which increases the difficulty of screening
for BOS by air trapping alone; and (2) differences in
statistical techniques, because Galbán et al9 assessed a
cross-validated model for classification on the entire
cohort; the current study assessed a cross-validated
model for classifier performance on an unexposed test
set, a standard approach in machine learning to
maximize external generalizability.27 For our model, the
addition of inspiratory volume improved accuracy and
sensitivity with increasing statistical significance,
suggesting that normal or low lung volumes likely
represent a disease other than BOS.

Our study was subject to some limitations. First, our
reliance on the experience of a single center may limit
external generalizability. We addressed this by
comparing PRM metrics with standardized measures,
such as PFTs, by minimizing unexplained variance in
clustering, by validating the machine learning model
chestjournal.org
on an unexposed test set, and by comparing
performance with radiologists. Future studies will
validate our machine learning model in cGVHD
patients at other academic medical centers. Second, we
converted lung volumes by PRM to percentage
predicted values. To our knowledge, such
plethysmographic standards of converting volumes
have not been validated specifically with the inhalation
and exhalation maneuvers of PRM. In studies that
employ PRM with COPD, computational output of
the software is correlated with clinical disease
state,10,28 with the intention of PRM metrics acting as
biomarkers. The approach of adjusting inspiratory
volume by sex and height and expiratory volume by
age, sex, and height is a unique feature of our study. It
normalized the inclusion of volumes in statistical
analysis and model analysis, given the dramatic
differences in absolute values that can occur between,
for example, shorter individuals and taller individuals.
In this adjustment, we used the standard conversion
equations as established by ATS/ERS guidelines.16

Third, our small sample size introduces the possibility
of random effects yielding a statistical signal. To
mitigate the risk, we used multiple approaches for
statistical inference in the relationship of PRM metrics
to ground truth—correlation, comparison of means,
PCA, clustering, and classification. A consistent
clinical and statistical significance was seen for
segregation of BOS patients from non-BOS patients in
physiologically relevant ways. Moreover, to assess the
robustness of the clustering model, we employed a
method described by Hastie and colleagues29 for the
iterative removal of a known number of observations
at random and subsequent determination of clustering
results on the remaining subset of data. We found
similar results as the final analysis. A mean total
variance of 76.7% of the data was captured from the
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subsets, as compared with 76.4% total variance
captured in the composite analysis. Mean PRM
metrics by cluster were largely unchanged (see e-
Table 3 and Clustering Analysis section in e-Appendix
1 for details). To ensure that the training and test set
for the classification model contained well balanced
distributions of disease with similar physiological
characteristics, we verified that disease states and
physiological parameters across the sets did not differ
(e-Table 4 in e-Appendix 1). To assess that the
clustering model was detecting a new signal in the
post-HCT context, we verified that pre-HCT
demographics were comparable across clusters (e-
Table 5 in e-Appendix 1). In contrast PRM metrics
alone phenotyped patients in a manner that was
validated by relevant posttransplant physiology, with
disease states and all PFTs after HCT revealing
differences that achieved group-wise statistical
significance (e-Table 6 in e-Appendix 1). Fourth,
selection bias may exist, because patients came to our
attention only if they were referred to our lung GVHD
clinic. This referral pattern may impact positive
predictive value and consequent applicability in low
prevalence settings.30 Fifth, our study patients received
multiple PFTs, with the PFT most proximal to their
PRM being used for analysis. No clear guidelines are
1102 Original Research
available for repeating PFTs in these patients, although
studies show that repeat PFTs allow for earlier
diagnosis of BOS31,32 and are actionable.31,33 Finally,
our study is retrospective, with patients receiving HCT
before study inclusion. However, data central to our
analysis were collected on a rolling basis according to
predefined methodology (eg, PFTs proximal to PRM
scan), and all diagnoses of posttransplantation lung
complications occurred during the study time span.
Importantly, most of our BOS patients (94%) met the
NIH clinical definition of BOS or were diagnosed by
biopsy, and independent of any clinical information,
clustering analysis identified 81% of patients with the
diagnosis of BOS. Insofar as PFTs—and by extension
PRM metrics—represent true physiology, this supports
our clinical definitions.

Interpretation
Our study suggests that a machine learning-based
taxonomy for pulmonary complications after HCT may
be possible, allowing for more precise medical
management for lung GVHD. By driving the process of
discovery as an outgrowth of patient care, our models
can be enhanced to assist in clinician decision-making
across a spectrum of posttransplantation lung
complications.
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